【摘要】 保证检测体系和实际体系的一致性,包括:pH、系统的总离子浓度、存在的任何表面活性剂或聚合物的浓度。

样品制备


Zeta电位样品制备有2个关键问题:

1)合适的浓度;

2)保证检测体系和实际体系的一致性,包括:pH、系统的总离子浓度、存在的任何表面活性剂或聚合物的浓度。

 

1. 最低浓度

在Zeta电位测试过程中所需的最小光强为20 kcps。因此最低浓度取决于相对折光指数差(粒子和溶剂间的折光指数差值)和粒子尺寸。

粒子的尺寸越大所产生的散射光越强,所需的浓度也就越低。对于折光指数差较大的样品,譬如TiO2粒子的水性悬浮液,TiO2的折光指数为2.5,与水的折光指数差较大,有较强的散射能力。因此对于300 nm的TiO2粒子,最小浓度可以为10-6 w/v %。对于折光指数差很小的样品,比如蛋白质溶液,最低浓度会高很多。通常最低浓度需要在0.1-1 w/v %之间才能有足够的散射光强进行Zeta电位测量。最终,对于特定样品进行一个成功的Zeta电位测量的最低浓度,应该由试验实际测量得到。

 

2. 最高浓度

Zeta电位测量过程中的散射光在向前的角度收集,因此激光应该保证能够穿过样品。如果样品的浓度过高,则激光将会由于样品的散射衰减很多,相应的降低检测到的散射光光强。为了补偿此影响,衰减器会让更过的激光通过。最终,样品的浓度范围必须由测定不同浓度下的Zeta电位的试验决定,由此来得到浓度对Zeta电位的影响。

 

3. 稀释介质

大多数样品的分散相,可以归于以下两类:

1)介电常数大于20的分散剂被定义为极性分散剂,如乙醇和水。

2)介电常数小于20的分散剂被定义为非极性或低极性分散剂,如碳氢化合物类、高级醇类。

多数样品要求稀释,稀释介质对于检测结果的可靠性是非常重要的。Zeta电位依赖于分散相的组成,因为它决定了粒子表面的特性。所给出的测量结果,如没有提及所分散的介质,则是没有太大意义的。

 

4. 如何保证稀释后样品表面状态不变?

制备样品最关键的地方,是在稀释过程中,保留纳米颗粒表面的真实状态。最好的办法就是即通过过滤或离心原始样品,得到清澈的分散剂,使用这种分散剂稀释原有浓度样品。以这种方式,100%完美地维持了表面与液体之间的平衡。如果过滤和离心比较麻烦,可以让样品自然沉淀,使用上清液中留下的小粒子来检测,也是比较好的方法。因为使用Smoluchowski理论近似时,Zeta电位与粒径依参数无关,所以检测上清液的小颗粒就可以表观显示整体颗粒表面电位情况。

 

5. 如何检测非极性体系中的Zeta电位?

在绝缘介质如正己烷等有机溶剂中,测量样品比较麻烦,需要在不使用高电压时,生成较高电场强度。它要求使用专门的样品池,universal dip cell(通用插入式样品池),因为此样品池具有较好的化学兼容性以及电极间的狭窄空间。

由于在非极性分散剂中,通常很少有离子以抑制Zeta电位,所测量的实际值一般是非常高的,如200或250 mV。 在这样的非极性系统中,稀释后样品的平衡呈时间依赖性,有时候需要平衡24小时以上。

总之,为了确保数据的可用性,一定要尽量保证检测体系和实际应用体系的统一性。并通过测试不同条件下Zeta电位的变化,直到Zeta电位不明显受参数变化的影响时,这个参数所在区间为可用。

为了保证数据可靠性,每个样品需要重复检测三次,取平均值!

 

科学指南针为您提供材料测试,主要业务范围包括XPS,普通XRD,透射电子显微镜TEM,全自动比表面及孔隙度分析BET等测试。

 

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。