【摘要】 目前,市场上常见的原子吸收光谱仪有火焰式、石墨炉式、氢化式、冷蒸汽式等四类。

原子吸收光谱仪分类

 

目前,市场上常见的原子吸收光谱仪有火焰式、石墨炉式、氢化式、冷蒸汽式等四类。

 

1、火焰式原子吸收光谱法( FLAA)

 

直接将样品导入仪器进行侦测。其不同于感应耦合电浆原子发射光谱法者,为只能进行单一元素的检测,及较不会受到元素间光谱线的干扰。笑气/乙炔或空气/乙炔火焰系作为将吸入的样品解离的能源,使样品变成自由的原子态,而可吸收待测原子的特定光线,分析某些元素时,所使用的温度或火焰的形式极重要,若未使用适当的火焰及分析条件,则化学和离子化的干扰就会产生。

 

2、石墨炉式原子吸收光谱法( GFAA)

 

此法系以电热式石墨炉取代火焰作为热源,石墨炉可分数个加热程序对样品进行渐进式的加热,因此,针对样品溶液中的有机、无机分子和盐类的溶剂之蒸发、干燥、分解及最后形成原子的过程,在火焰式原子吸收光谱法或感应耦合电浆原子发射光谱法中,于数个毫秒内即完成,但在石墨炉中则可于所设定的温度及时间区间中,用足够的时间进行之,且可利用升温程序或基质修饰剂,去除待测物样品中不需要的基质成份,以减少干扰。

 

本方法的优点是可提供极低的侦测极限,若样品相当干净,则极易使用本方法执行样品检测。由于本方法极灵敏,因此,干扰问题较严重,针对基质复杂的样品,如何找到最佳的消化方法,加热温度和加热时间及基质修饰剂是一大挑战。

 

3、氢化式原子吸收光谱法( HGAA)

 

利用选择性的化学还原反应,将样品消化液中的砷或硒还原成氢化物而予分离,因此本方法的优点是能将此二种元素从复杂的样品中分离出来,而无其它分析方法可能遭遇的干扰问题。报告指出,在下列情况下会有严重的干扰问题:

 

(1)有铜、银、汞等易还原的金属存在时;

 

(2)有大于200mg/L之高浓度过渡元素存在时,

 

(3)样品消化液中有氧化剂(氮氧化物)存在时。

 

4、冷蒸气原子吸收光谱法( CVAA )

 

是利用选择性的化学还原反应,只将样品消化液中的汞还原。本方法对汞的分析极灵敏,但会受样品中挥发性有机物、氯、和硫化物的干扰。

 

原子化过程

 

原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。

 

1、火指原子化

 

这过程中,大致分为两个主要阶段:

 

(1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。

 

(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子们键能,同时还与火焰的温度及气份相关。分子的离解能越低,对离解越有利,就原子吸收光谱分析而言,解高能小于3.5eV的分子,容易被解离,当大于5eV时,解离就比较困难。

 

2、石墨炉原子化

 

样品置于石墨管内,用大电流通过石墨管,产生3000℃以下的高温,使样品蒸发和原子化。为了阻止石墨管在高温氧化,在石墨管内、外部用惰性气体保护。石置炉加温阶段一般可分为:

 

(1)干燥。此阶段是将溶剂蒸发掉,加热的温度控制在溶剂的沸点左右,但应避免暴沸和发生溅射,否则会严重影响分析精度和灵敏度。

 

(2)灰化。这是比较重要的加热阶段。其目的是在保证被铡元素没有明显损失的前提下,将样品加热到尽可能高的温度,破坏或蒸发掉基体,减少原子化阶段可能遇到的元素间干扰,以及光散射或分子吸收引起的背景吸收,同时使被铡院素变为氧化物或其他类型物。

 

(3)原子化。在高温下,把被测元素的氧化物或其它类型物热解和还原(主要的)成自由原子蒸气。

 

3、氢化物发生法

 

在酸性介质中,以硼氢化钾(KBH 4 )作为还原剂,使锗、锡、铅、砷、锑、秘、硒和储还原生成共价分于型氢化物的气体,然后将这种气体引人火焰或加热的石英管中,进行原子化。AsCl 3 +4KBH 4 +HCl+8H 2 O=AsH 3 +4KCl+4HBO 2 +13H 2

 

火焰

 

1、火焰的种类

 

原子吸收光谱分析中常用的火焰有:空气一乙炔、空气一煤气(丙烷)和一氧化二氮一乙炔等火焰。

 

(1)空气一乙炔。这是最常用的火焰。此焰温度高(2300℃),乙炔在燃烧过程中产生的半分解物C*、CO*、CH*等活性基因,构成强还原气氛,特别是富燃火焰,具有较好的原子化能力。

 

(2)空气一煤气(丙烷)。此焰燃烧速度慢、安全、温度较低(1840~1925℃),火焰稳定透明。火焰背景低,适用于易离解和干扰较少的元素,但化学干扰多。

 

(3)一氧化二氮一乙炔。由于在一氧化二氮中,含氧量比空气高,所以这种火焰有更高的温度(约3000℃)。

 

在富燃火焰中,除了产生半分解物C*、CO*、CH*外,还有更强还原性的成分CN*及NH*等,这些成分能更有效地抢夺金属氧化物中氧,从而达到原子化的目的。这就是为什么空气乙炔火焰不能测定的硅、铝、钛、铼等特别难离解的元素,在一氧化二氮一乙炔火焰中就能测定的原因。本文除特指外均属空气一乙炔火焰。

 

2、火焰的类型

 

(1) 化学计量火焰。又称中性火焰,这种火焰的燃气及助燃气,基本上是按照它们之间的化学反应式提供的。对空气一乙炔火焰,空气与乙炔之比约为4:1。火焰是蓝色透明的,具有温度高,干扰少,背景发射低的特点。火焰中半分解产物比贫燃火焰高,但还原气氛不突出,对火焰中不特别易形成单氧化物的元素,除碱金属外,采用化学计量火焰进行分析为好。

 

(2) 贫焰火焰。当燃气与助燃气之比小于化学反应所需量时,就产生贫燃火焰。其空气与乙炔之比为4:1至6:1。火焰清晰,呈淡蓝色。由于大量冷的助燃气带走火焰中的热量,所以温度较低。由于燃烧充分,火焰中半分解产物少,还原性气氛低,不利于较难离解元素的原子化,不能用于易生成单氧化物元素的分析。但温度低对易离解元素的测定有利。

 

(3)富燃火焰。燃气与助燃气之比大于化学反应量时,就产生富燃火焰。空气与乙炔之比为4:1.2~二.5或更大,由于燃烧不充分,半分解物浓度大,具有较强的还原气氛。温度略低于化学计量火焰,中间薄层区域比较大,对易形成单氧化物难离解元素的测定有利,但火焰发射和火焰吸收及背景较强,干扰较多,不如化学计量火焰稳定。

 

科学指南针为您提供材料测试,主要业务范围包括XPS,普通XRD,透射电子显微镜TEM,全自动比表面及孔隙度分析BET等测试。

 

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。